Your search did not yield any results.

Feel free to contact us in the event that the training you require is not listed. We may be in a position to offer this training by way of our partners or by creating a tailored class.

Course Directory [training on all levels]

Upcoming Classes
Gain insight and ideas from students with different perspectives and experiences.

Blog Entries publications that: entertain, make you think, offer insight

Today we live in the age of technology. It seems like everyone owns at least one computer, but few actually know how they work. We hear about Java tutorials and C# programming, but why are these things important?

There has been an increasing demand for those who are proficient in web development. It is a job field that has grown substantially in the past decade, and it is still continuing to flourish with no signs of stopping. Learning a web language is not only a useful skill, but a necessary one. So why, out of all of the available web languages, is Java the most valuable?

·         First off, it is a simple language that is easily learned and well known.

·         Java has been around for awhile now, and has earned its place as one of the pillars of modern day computer architecture. Information on Java is abundant, and ranges from online tutorials to books, such as "Java for Dummies."

It is said that spoken languages shape thoughts by their inclusion and exclusion of concepts, and by structuring them in different ways. Similarly, programming languages shape solutions by making some tasks easier and others less aesthetic. Using F# instead of C# reshapes software projects in ways that prefer certain development styles and outcomes, changing what is possible and how it is achieved.

F# is a functional language from Microsoft's research division. While once relegated to the land of impractical academia, the principles espoused by functional programming are beginning to garner mainstream appeal.

As its name implies, functions are first-class citizens in functional programming. Blocks of code can be stored in variables, passed to other functions, and infinitely composed into higher-order functions, encouraging cleaner abstractions and easier testing. While it has long been possible to store and pass code, F#'s clean syntax for higher-order functions encourages them as a solution to any problem seeking an abstraction.

F# also encourages immutability. Instead of maintaining state in variables, functional programming with F# models programs as a series of functions converting inputs to outputs. While this introduces complications for those used to imperative styles, the benefits of immutability mesh well with many current developments best practices.

For instance, if functions are pure, handling only immutable data and exhibiting no side effects, then testing is vastly simplified. It is very easy to test that a specific block of code always returns the same value given the same inputs, and by modeling code as a series of immutable functions, it becomes possible to gain a deep and highly precise set of guarantees that software will behave exactly as written.

Further, if execution flow is exclusively a matter of routing function inputs to outputs, then concurrency is vastly simplified. By shifting away from mutable state to immutable functions, the need for locks and semaphores is vastly reduced if not entirely eliminated, and multi-processor development is almost effortless in many cases.

Type inference is another powerful feature of many functional languages. It is often unnecessary to specify argument and return types, since any modern compiler can infer them automatically. F# brings this feature to most areas of the language, making F# feel less like a statically-typed language and more like Ruby or Python. F# also eliminates noise like braces, explicit returns, and other bits of ceremony that make languages feel cumbersome.

Functional programming with F# makes it possible to write concise, easily testable code that is simpler to parallelize and reason about. However, strict functional styles often require imperative developers to learn new ways of thinking that are not as intuitive. Fortunately, F# makes it possible to incrementally change habits over time. Thanks to its hybrid object-oriented and functional nature, and its clean interoperability with the .net platform, F# developers can gradually shift to a more functional mindset while still using the algorithms and libraries with which they are most familiar.

 

Related F# Resources:

F# Programming Essentials Training

Another blanket article about the pros and cons of Direct to Consumer (D2C) isn’t needed, I know. By now, we all know the rules for how this model enters a market: its disruption fights any given sector’s established sales model, a fuzzy compromise is temporarily met, and the lean innovator always wins out in the end.

That’s exactly how it played out in the music industry when Apple and record companies created a digital storefront in iTunes to usher music sales into the online era. What now appears to have been a stopgap compromise, iTunes was the standard model for 5-6 years until consumers realized there was no point in purchasing and owning digital media when internet speeds increased and they could listen to it for free through a music streaming service.  In 2013, streaming models are the new music consumption standard. Netflix is nearly parallel in the film and TV world, though they’ve done a better job keeping it all under one roof. Apple mastered retail sales so well that the majority of Apple products, when bought in-person, are bought at an Apple store. That’s even more impressive when you consider how few Apple stores there are in the U.S. (253) compared to big box electronics stores that sell Apple products like Best Buy (1,100) Yet while some industries have implemented a D2C approach to great success, others haven’t even dipped a toe in the D2C pool, most notably the auto industry.

What got me thinking about this topic is the recent flurry of attention Tesla Motors has received for its D2C model. It all came to a head at the beginning of July when a petition on whitehouse.gov to allow Tesla to sell directly to consumers in all 50 states reached the 100,000 signatures required for administration comment. As you might imagine, many powerful car dealership owners armed with lobbyists have made a big stink about Elon Musk, Tesla’s CEO and Product Architect, choosing to sidestep the traditional supply chain and instead opting to sell directly to their customers through their website. These dealership owners say that they’re against the idea because they want to protect consumers, but the real motive is that they want to defend their right to exist (and who wouldn’t?). They essentially have a monopoly at their position in the sales process, and they want to keep it that way. More frightening for the dealerships is the possibility that once Tesla starts selling directly to consumers, so will the big three automakers, and they fear that would be the end of the road for their business. Interestingly enough, the big three flirted with the idea of D2C in the early 90’s before they were met with fierce backlash from dealerships. I’m sure the dealership community has no interest in mounting a fight like that again. 

To say that the laws preventing Tesla from selling online are peripherally relevant would be a compliment. By and large, the laws the dealerships point to fall under the umbrella of “Franchise Laws” that were put in place at the dawn of car sales to protect franchisees against manufacturers opening their own stores and undercutting the franchise that had invested so much to sell the manufacturer’s cars.  There’s certainly a need for those laws to exist, because no owner of a dealership selling Jeeps wants Chrysler to open their own dealership next door and sell them for substantially less. However, because Tesla is independently owned and isn’t currently selling their cars through any third party dealership, this law doesn’t really apply to them. Until their cars are sold through independent dealerships, they’re incapable of undercutting anyone by implementing D2C structure.

On March 6 of this year, Microsoft's .NET Foundation released its third preview release of .NET Core 3 — which is its free and open-source framework for developing apps on Windows, MacOS and Linux — with an official release scheduled for later this year. This release brings a wealth of new features and enhancements. This includes the following: 
 
1. Windows Desktop Support
 
One of the biggest additions to version 3.0 of the framework is the ability to develop Windows desktop applications. The new Windows Desktop component lets you build applications using either the Windows Presentation Foundation (WPF) graphical subsystem or the Windows Forms graphical class library. You can also use Windows UI XAML Library (WinUI) controls in your applications. 
 
The Windows Desktop component is only supported and included on Windows installs. 
 
2. Support for C# 8
 
The new framework has support for C# 8, which includes not only the ability to create asynchronous steams but features such as: 
 
Index and Range data types
Using declarations
Switch expressions
 
The Index and Range data types make array manipulation easier, while Using declarations ensure that your objects get disposed once they are out of scope. Finally, Switch expressions extend Switch statements by allowing you to return a value. 
 
3. IEEE Floating-Point Improvements
 
The new framework includes floating point APIs that comply with IEEE 754-2008. This includes fixes to both formatting and parsing as well as new Math APIs such as: 
 
BitIncrement/BitDecrement
MaxMagnitude/MinMagnitude
ILogB
ScaleB
Log2
FusedMultiplyAdd
CopySign
 
4. Support for Performance-Oriented CPU Instructions
 
The new framework includes support for both SIMD and Bit Manipulation instruction sets, which can create significant performance boosts in certain situations, such as when you are processing data in parallel. 
 
5. Default Executables
 
With the new framework, you can now produce framework-dependent executables by default without having to use self-contained deployments. 
 
6. Local dotnet Tools
 
In the previous version of the framework, there was support for global dotnet tools. But the current version adds support for local tools as well. These tools are associated with a specific disk location, and this allows you to enable per-repository and per-project tooling. 
 
7. Support for MSIX Deployments
 
The new framework supports MSIX, which is a Windows app package format that you can use when deploying Windows desktop applications. 
 
8. Built-In and Fast JSON Support
 
In prior versions of the framework, you had to use Json.NET if you wanted JSON support in your application. The framework, though, now has built-in support that is not only fast but also has low allocation requirements. It also adds 3 new JSON types, which include: 
 
Utf8JsonReader
Utf8JsonWriter
JsonDocument
 
9. Cryptography Support
 
The new framework supports AES-GCM and AES-CCM ciphers. It also supports the importing and exporting of asymmetric public and private keys from a variety of formats without the need of an X.509 certificate. 
 
Platform Support
 
.NET Core 3 supports the following operating systems: 
 
Alpine: 3.8+
Debian: 9+
Fedora: 26+
macOS: 10.12+
openSUSE: 42.3+
RHEL: 6+
SLES: 12+
Ubuntu: 16.04+
Windows Clients: 7, 8.1, 10 (1607+)
Windows Servers: 2012 R2 SP1+
 
The framework further supports the following chips: 
 
x64 (Windows, macOS and Linux)
x86 (Windows)
ARM32 (Windows and Linux)
ARM64 (Linux)
 Jump to top
 

training details locations, tags and why hsg

the hartmann software group advantage
A successful career as a software developer or other IT professional requires a solid understanding of software development processes, design patterns, enterprise application architectures, web services, security, networking and much more. The progression from novice to expert can be a daunting endeavor; this is especially true when traversing the learning curve without expert guidance. A common experience is that too much time and money is wasted on a career plan or application due to misinformation.

The Hartmann Software Group understands these issues and addresses them and others during any training engagement. Although no IT educational institution can guarantee career or application development success, HSG can get you closer to your goals at a far faster rate than self paced learning and, arguably, than the competition. Here are the reasons why we are so successful at teaching:

  • Learn from the experts.
    1. We have provided software development and other IT related training to many major corporations since 2002.
    2. Our educators have years of consulting and training experience; moreover, we require each trainer to have cross-discipline expertise i.e. be Java and .NET experts so that you get a broad understanding of how industry wide experts work and think.
  • Discover tips and tricks about programming
  • Get your questions answered by easy to follow, organized experts
  • Get up to speed with vital programming tools
  • Save on travel expenses by learning right from your desk or home office. Enroll in an online instructor led class. Nearly all of our classes are offered in this way.
  • Prepare to hit the ground running for a new job or a new position
  • See the big picture and have the instructor fill in the gaps
  • We teach with sophisticated learning tools and provide excellent supporting course material
  • Books and course material are provided in advance
  • Get a book of your choice from the HSG Store as a gift from us when you register for a class
  • Gain a lot of practical skills in a short amount of time
  • We teach what we know…software
  • We care…
learn more
page tags
what brought you to visit us
nstore/product,  , nstore/product,  Classes, nstore/product,  Courses, nstore/product,  Course, nstore/product,  Seminar
nearsourcing, reshoring and insourcing
developing talent and expertise at home
Companies are beginning to realize that talent and skills developed within the United States are exceedingly more important for the growth of an organization than the alternative: outsourcing. Considerations include: security, piracy, cultural differences, productivity, maintainability and time to market delays.
In the past, the reason for outsourcing centered on cost savings, lack of resources at home and the need to keep up with market trends. These considerations are proving to be of little merit as many organizations have, consequently, experienced productivity declines, are now finding considerable talent within their immediate location and have realized a need to gain more control over product development.
As strong advocates of Agile/Scrum development, HSG whole heartedly embraces this new entrepreneurial spirit because we know it works and because we believe our country's future weighs in the balance.

Interesting Reads Take a class with us and receive a book of your choosing for 50% off MSRP.